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Abstract. In this paper it is shown that the (GOP) algorithm is guaranteed to be convergent for a 
large class of smooth mathematical programming problems. 
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I. Introduction 

Global optimization of nonconvex programming problems has been an important 
topic in optimization theory and has generated significant interest in recent years. 
A new primal-relaxed dual method, called the GOP algorithm, is reported to be 
efficient for bilinear programming problems, polynomial programming problems 
and rational polynomial programming problems (see, for example,[1]-[2], and [5]- 
[7]). This metLod can be applied when the problem has been formulated in the 
following standard form: 

min f ( x ,  y) (SOP) 
x~y 

subject to gi(x, y) <_ O, hi(x ,  y) = 0, x C X, y C Y 

w i t h l  < i < k , l _ < j _ < p ,  

where X and Y are non-empty compact convex sets in R ~ and R "~ (n, ra _> 1), 
f ( ' ,  Y), 9i(', Y), f ( x , ' )  and gi(x, .)  are differentiable convex functions for any fixed 
y E Y or x E X,  and hi(x,  .) and hj(., y) are affine for any fixed x in X or y in 
Y. The GOP method was not considered applicable to very broad mathematical 
programming problems until the result in [3]. In [3] we proved that a large class of 
smooth mathematical programming problems can indeed be reformulated in this 
form by a simple transformation of variables. We now briefly state the result in [3]. 
Let X be a non-empty compact convex set in R ~. Let F( . )  and Gi(.) (1 < i < k) 
be continuous function on X.  We will assume that F, Gi E C2(RN). We now 
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consider the following optimization problem: 
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minF( ) (CP) 

subject t o G i ( x ) < 0 ,  x C X ,  with l < i < k .  

It is clear that (GP) represents a large class of mathematical programming prob- 
lems. In [3] we proved the following theorem: 

THEOREM 1. Let X, F and Gi(1 < i < k) satisfy the conditions in (GP). Then 
the (GP) can be equivalently formulated in the following standard form: 

min f (x ,  y) (ROP)  
x~y 

subject to gi(x, y) < O, hi(x,  y) = O, x E X,  y E Y 

w i t h l  < i < k , l _ < j _ < k ,  

where f ,  9i and hj satisfy the all conditions in (SOP). 

The functions f ,  gi and hj  c a n  be explicitly given as f ( x ,  y) = F(x)  + a x T x  -- 
c~yrx, gi(x ,y)  = Gi(x) + o ~ x T x  - -  o~yTx for 1 < i < k and hj (x ,y )  = xj - yj 
for 1 _< j < k. The constant o~ can be given by estimating the eigenvalues of the 
Hessian matrices of F and Gi (1 < i < k). From this result it is clear that the GOP 
method is actually applicable to very broad mathematical programming problems. 
Most of useful finite dimensional problems in practice are virtually covered. We 
refer the readers to [5] and [8]-[9] for important applications of this difference of 
convex functions' transformation. 

It is not straightforward to apply the convergence theorem in [1] and [2] to 
(ROP). The original conditions given in [1] and [2] are that the Slater's constraint 
qualification holds for (ROP) for any fixed y and the optimal multipliers of (ROP) 
for any fixed y are uniformally bounded. It is clear that these conditions are too 
restrictive to apply here. For example, in (ROP) if x0 E X is such that G(xo) = 0 
for an i, then the Slater's constraint qualification will not hold at y = x0. The 
verification of the boundedness condition on the optimal multipliers is also very 
difficult for a complicated problem. In this paper, we will show that the (GOP) 
algorithm is guaranteed to be convergent when applied to (ROP). 
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2. A Generalized Primal-Relaxed Dual Approach 

In this section we will describe the (GOP) algorithm in a general framework in 
which one can examine some important issues conceming the (GOP), as well as 
other alternative primal-relaxed dual algorithms. For instance, we can easily show 
the convergence of the (GOP) when applied to (ROP). This idea has also been used 
in [4] to develop and examine new primal and relaxed dual algorithms. We begin 
with a lemma: 

LEMMA 1. Let f , g and h be given as in (ROP). Then for any Yo E V there are 
(Ao, #o) E R p • R~ and xo E X such that #Tg(xo , YO) = O, (xo, Yo) E AD, and 
foranyx  E X and(A,#)E R p • R~ 

where 

L(xo, Yo, A, #) _< L(xo, Y0, Ao, #o) _< L(x, Yo, Ao, #o), (SP) 

L(x, y, A, #) = f ( x ,  y) + ATh(x, y) + #Tg(x, y). (2) 

AD is the admissible set of (ROP) which is assumed to be compact, and V = {y E 
Y : there is an x E X such that g(x, y) <_ 0 and h(x, y) = 0.}. 

Proof. Based on the convexity of f ( . ,  Yo), it is easy to see that xo = Yo, Ao = 
- V x f ( x o ,  Yo) and #o = 0 will satisfy the requirement of the lemma. 

We now give the primal-relaxed dual formula for (ROP). First it is clear that for any 
Yo E V = {y E Y : there is an x E X such that g(x, y) <_ 0 and h(x, y) = 0.}, 

Y = x rnin D f (x ,  y) < rain f (x ,  YO) = u+(Y0). (P)  
( ,y)eA -- zeX,g(x,yo)<_O,h(z,yo)=O 

On the other hand, it follows from the convexity of f ( . ,  y) and gi(', Y) and the left 
inequalities in (SP) that 

u =  ~min f ( x , y ) = m i n  min f ( x , y ) =  
( ,y)EAD yeV xEX,g(x,y)<O,h(x,y)=O 

min max " yev ~,u>oml~ ( f ( x ' y ) +  ATh(x'Y)+ #T g(x'Y)) >- 

min max m i n H ( ~ " t ) ( x , y ) =  u - ( V , H ) ,  (RD) 
yEV ()~t,ut)EU xEX 

where U is a sequence {(At, pt) } with (At, #t) E R p • R~ for t=l,2 ..... N and the 

mapping H : U -~ CI (X  x Y)  is such that that H(;~*,'*) is a continuous function 
on X x Y satisfying that f + ATh + #Tg >_ H(At,m) on X • Y for every fixed 
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(At, ~t) E U. 

The primal-relaxed dual approach is to find a sequence of y~ E Y and Un, and a 

rule / /n  to give H (~'u~) for every (At, #t) E U~ such that u+(y~) - u-(U~, H~) --+ 
0 as n --+ oc. The selections of Un and Hn are clearly not unique but they must make 
it possible to find the global solutions computationally for (RD). Let (xi, Ai, #i) be 
a solution of (SP) for a given yj. We will take 

g(;~i'"d( x, y) = 

L(xi,  Yi, Ai, #i) + V~L(xi ,  y, Ai, #i)(x - xi) + VvL(xi ,  Yi, Ai, #i)(y - yi). (3) 

The resulting algorithm is the (GOP) (see [1] and [2]), and has the following 
generic steps: 
(1) Given Y0 C V and e > 0. 
(2) Given Yn and solve (SP) for y = Yn to obtain Xn and (An, #~). 

(3) Solve (RD) to obtain Yn+I, where U = {(Ai, #i)} i = 1, ..., n and H (;~''~) is 
given by equation (2). 
(4) If u+(Yn) - u - (Un,  Hn) _< e, stop. Otherwise go to step 2. 
There are other useful forms of [In which lead to different primal-relaxed dual 
algorithms (see [4]). 

3. Convergence of (GOP) for (ROP) 

Now we can show the convergence of the (GOP) when applied to (ROP). 

THEOREM 2. Assume that for any y C V there exists a solution SP(y) of SP such 
that the mapping of y to S P( y ) is locally bounded on V. Let { ( xi, Yi ) } be generated 
from the (GOP) algorithm applied to (ROP). Then every cluster point of { (xi, Yi) } 
is a solution of (ROP). Moreover, the (GOP) terminates at finite steps. 

Proof. It follows from the compactness of the admissible set of (ROP) that there 
is {ki} a subsequence of {i} such that (xk~, yk~) ~ (x0, Y0) which is admissible. 
We show that (xo, Y0) is a global solution of (ROP). By noting that (xk~, Ak~, #k~ ) is 
a solution of (SP) for the fixed Yk~ one can see that u + (yk~) = L(xk~, Yk~, Ak~, #k~ ). 
On the other hand, one can show that 

l]--(U]~i.{.1--l,H~i+l--1) ~ L(xk~,yk~,Ak~,#k~) -- 6k~, (4) 

with (~k~ _> 0 and 6k~ --+ 0 as i ~ oc, because V~L(xk~, yk,, Ak~, #k~)(x - xk~ ) >_ 0 
for x E X,  X is compact space, {(Ai, pi)} is bounded by the assumption stated in 
the theorem, andfand g are C 2 functions. Note that {u-  (Ui, Hi)} is bounded above 
and is increasing as i --+ ec so that {u-(Ui,  Hi)} is convergent as i --+ oc. Thus 
0 ~ l/'b(Yki)- lJ-(Ukl, Hki) ~_ (~kl "t-l]-(Uki+l-1, Hki+l-1)- l/-(Ukl, Hki) ~ 0 
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as i -+ ~ .  Therefore  u + (Yk,) ~ min(~,y)eAD f ( x ,  y), where AD is the admissible  

set o f  (ROP), as u+(yi) is a upper  bound of  (ROP) and u-(Ui,  Hi) is a lower one 
for any {i}. By noting that u+(yl) = f (x i ,  Yi) and the continuity o f f  one can see 

that (x0, Y0) is a global solution of  (ROP) since ( x ~ ,  Yki ) --+ (x0, Y0). 
It fol lows f rom the proof  above that for any subsequence of {i} there is a subse- 
quence of  this subsequence,  still denoted as {i}, such that u + (Yi) - u -  (Ui, H i )  --+ 0 

and u+(yi) --+ min(~,y)eAD f ( x , y ) ,  which is unique. Consequently u+(yi) - 

u-(Ui, H i )  --+ 0 and  u + ( y d  - ~  u as i - ~  oc .  

References 

1. Floudas, C. A. and Visweswamn,V. (1990) A global optimization algorithm (COP) for certain 
classes of nonconvex NLPs I-II, Computer Chemical Engineering, 14, 1398-1434. 

2. Floudas, C. A., and Visweswaran,V. (1993) A primal-relaxed dual global optimization approach, 
Journal of Optim&ation Theory and Applications, 78, (2), 187-225. 

3. Liu, W. B., and Floudas, C. A., (1993) A remark on the COP algorithm for global optimization, 
Journal of Global Optimization, 3, 519-521. 

4. Liu, W. B., and Floudas, C. A., (1995) A generalized primal-relaxed dual approach for global 
optimization, to appear in JOTA. 

5. Maranas, C. D., and Floudas, C. A., (1992) A global optimization approach for Lennard-Jones 
microclusters, Journal of Chemical Physics, 97 (10), 7667-7678. 

6. Visweswaran, V., and Floudas, C. A., (1992) Unconstrained and constrained global optimization 
of polynomial functions in one variable, Journal of Global Optimization, 2, 73-100. 

7. Visweswaran, V. and Floudas, C. A. (1993) New properties and computational improvement of 
the COP algorithm for problems with quadratic objective functions and constraints, Journal of 
Global Optimization, 3,439-462. 

8. Maranas, C. D. and Floudas, C. A. (1993) Global optimization in molecular conformation, Annals 
of Operations Research, 42, 85-117. 

9. Maranas, C. D. and Floudas, C. A. (1994) Global minimum potential energy conformations of 
small molecules, JournalofGlobal Optimization, 4, 135-170. 


